LIQUIZYME

URIC ACID

(URICASE / POD Method)

Code	Product Name	Pack Size
LS031B	Liquizyme Uric Acid	4 x 50 ml
LS031G	Liquizyme Uric Acid	1 x 50 ml
LS031H	Liquizyme Uric Acid	2 x 50 ml
LS031I	Liquizyme Uric Acid	10 x 50 ml
LS031J	Liquizyme Uric Acid	20 x 50 ml

Intended Use

Diagnostic reagent for quantitative *in vitro* determination of Uric Acid in human serum, plasma and urine.

Clinical Significance

Uric acid is a metabolite of purines, nucleic acids and nucleoproteins, consequently, abnormal levels may be indicative of a disorder in the metabolism of these substances. Hyperuricaemia may be observed in renal dysfunction, gout, leukemia, polycythaemia, atherosclerosis, diabetes and hypothyroidism. Decreased levels are present in patients with Wilson's Disease.

Principle

The series of reactions involved in the assay system is as follows:

Uricase
Uric Acid +
$$O_2$$
 + H_2O \longrightarrow Allantoin + CO_2 + H_2O_2
Peroxidase

DHBS + 4AAP + 2H₂O₂ — Quinoneimine dye + 4H₂O

- 1. Uric acid is oxidised to allantoin by uricase with the production of H_2O_3 .
- 2.The peroxide reacts with 4-aminoantipyrine (4-AAP) and DHBS in the presence of peroxidase to yield a quinoneimine dye. The absorbance of this dye at 505 nm is proportional to uric acid concentration in the sample.

Reagent Composition

Reagent 1: Uric Acid Enzyme Reagent

 HEPES Buffer
 : >60 mmol/L

 4-AAP
 : >0.2 mmol/L

 URICASE
 : >300 U/L

 Peroxidase
 : >1000 U/L

 DHBS
 : >0.75 mmol/L

Reagent 2 : Uric Acid Standard : 6 mg/dl

Ready to use

Reagent Preparation

Reagents are liquid, ready to use.

Stability And Storage

The unopened reagents are stable till the expiry date stated on the bottle and kit label when stored at $2-8^{\circ}C$.

Materials Required But Not Provided

- Clean & Dry container.
- Laboratory Glass Pippetes or Micropioettes & Tips.
- Colorimeter or Bio-Chemistry Analyzer.

Specimen Collection And Handling

Use unheamolytic serum or plasma (heparin, EDTA) or urine. It is recommended to follow NCCLS procedures (or similar standardized conditions).

Stability In Serum / Plasma:

3 days : $at 20 - 26^{\circ}C$ 7 days : $at 4 - 8^{\circ}C$

In Urine:

6 months : at - 20° C 4 days : at $20 - 26^{\circ}$ C Dilute urine 1 + 9 ratio and multiply results by 10

Calibration

Calibration with the Uric Acid standard provided in the kit is recommended.

Quality Control

It's recommended to run normal and abnormal control sera to validate reagent performance.

Unit Conversion

 $mg/dl \times 60 = \mu mol/l$

Expected Values

 ${\sf Serum}:$

Adults Male : 4.0 - 7.2 mg/dl Female : 2.7 - 6.5 mg/dl

Urine, 24 h:

Average Diet : 250 - 750 mg/24 hrs.

It is recommended that each laboratory verify this range or derives reference interval for the population it serves.

Performance Data

Data contained within this section is representative of performance on Beacon system. Data obtained in your laboratory may differ from these values.

Limit of quantification:0.6 mg/dlLinearity:20 mg/dlMeasuring range:0.6 - 20 mg/dl

Precision

recision				
Intra-assay precision	Mean	SD	CV	
Within run (n=20)	(mg/dl)	(mg/dl)	(%)	
Sample 1	6.28	0.14	2.27	
Sample 2	8.84	0.26	2.89	
Inter-assay precision	Mean	SD	CV	
Run to run (n=20)	(mg/dl)	(mg/dl)	(%)	
Sample 1	8.89	0.15	1.71	

Comparison

A comparison between Liquizyme Uric Acid (y) and a commercially available test (x) using 20 samples gave following results:

y = 1.003 x + 0.094 mg/dl

r = 0.999

Interferences

 $Following \, substances \, do \, not \, interfere \, : \,$

haemoglobin up to 10 g/l, bilirubin up to 40 mg/dl, triglycerides up to $2000\,\text{mg/dl}.$

Warning And Precautions

For *in vitro* diagnostic use. To be handled by entitled and professionally educated person. Reagents of the kit are not classified like dangerous.

Waste Management

 ${\it Please \, refer \, to \, local \, legal \, requirements.}$

Assay Procedure

Wavelength : 505 nm Cuvette : 1 cm

Addition Sequence	Reagent Blank	Standard	Sample
Reagent 1	1000 μΙ	1000 μΙ	1000 μΙ
Standard	-	25 μΙ	-
Sample	-	-	25 μΙ
Distilled Water	25 μΙ	-	-

Mix and incubate 5 min. at 37°C. Measure absorbance of the sample Abs. T and starndard Abs. S against reagent blank.

Calculation

Uric Acid (mg/dl) =
$$\frac{Abs. T}{\Delta bs. S}$$
 x 6

Applications for automatic analysers are available on request.

Assay Parameters For Photometers

Mode	End point	
Wavelength 1 (nm)	505	
Sample Volume (μΙ)	25	
Reagent Volume (µI)	1000	
Incubation time (min.)	5	
Incubation temp. (°C)	37	
Normal Low (mg/dl)	4	
Normal High (mg/dl)	7.2	
Linearity Low (mg/dl)	0.6	
Linearity High (mg/dl)	20	
Concentration of Standard	6 mg/dl	
Blank with	Reagent	
Unit	mg/dl	

References

- 1. Searcy, R.L. Diagnostic Biochemistry. Mc Graw-Hill, New York, NY, 1969.
- Henry, R.J. Common C. and Winkelman J.W. (eds), Clinical Chemistry: Principles and Techniques. Harper & Row, Hagerstown, MD. 1974.
- 3. Balis, M.E. Adv. Clin. Chem. 18(213) 1976.
- 4. Trivedi, R. Betra, E. Clin. Chem. 22(1223), 1976.
- 5.Kabasakalin, P. Kalliney, S. and Wescott, A. Clin. Chem.19 (522) 1973.
- 6. Trinder, P.J. Clin. Pathol. 22(246) 1949.
- 7. Shephard, MD. Mezzachi, RD. Clin. Biochem., Revs, 1983: 4: 61-7.
- 8. Young, DS. Effects of Drugs on Clinical Laboratory Tests. Third Edition. 1990; 3: 360-370.
- 9.Tietz N. W., (Ed.),Textbook of Clinical Chemistry. Burtis CA and Ashwood ER, Fifth Edition, 2012.

Symbols Used On Labels

REF

Catalogue Number 444

Manufacturer

 $\Box i$

See Instruction for Use

LOT

Lot Number

CONT

Content

1

Storage Temperature

Expiry Date

In Vitro Diagnostics

BEA/24/URI/LS/IFU-02 22/04/2022